A Classification of Regular Embeddings of Graphs of Order a Product of Two Primes

نویسندگان

  • SHAO-FEI DU
  • JIN HO KWAK
چکیده

In this paper, we classify the regular embeddings of arc-transitive simple graphs of order pq for any two primes p and q (not necessarily distinct) into orientable surfaces. Our classification is obtained by direct analysis of the structure of arc-regular subgroups (with cyclic vertex-stabilizers) of the automorphism groups of such graphs. This work is independent of the classification of primitive permutation groups of degree p or degree pq for p = q and it is also independent of the classification of the arc-transitive graphs of order pq for p = q.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ON THE SPECTRUM OF DERANGEMENT GRAPHS OF ORDER A PRODUCT OF THREE PRIMES

A permutation with no fixed points is called a derangement.The subset $mathcal{D}$ of a permutation group is derangement if all elements of $mathcal{D}$ are derangement.Let $G$ be a permutation group, a derangementgraph is one with vertex set $G$ and derangement set $mathcal{D}$ as connecting set. In this paper, we determine the spectrum of derangement graphs of order a product of three primes.

متن کامل

Nonorientable regular embeddings of graphs of order p2

In [J. Algeb. Combin. 19(2004), 123–141], Du et al. classified the orientable regular embeddings of connected simple graphs of order pq for any two primes p and q. In this paper, we shall classify the nonorientable regular embeddings of these graphs, where p 6= q. Our classification depends on the classification of primitive permutation groups of degree p and degree pq but is independent of the...

متن کامل

Regular Embeddings of Canonical Double Coverings of Graphs

This paper addresses the question of determining, for a given graph G, all regular maps having G as their underlying graph, i.e., all embeddings of G in closed surfaces exhibiting the highest possible symmetry. We show that if G satisfies certain natural conditions, then all orientable regular embeddings of its canonical double covering, isomorphic to the tensor product G K2 , can be described ...

متن کامل

Labeling Subgraph Embeddings and Cordiality of Graphs

Let $G$ be a graph with vertex set $V(G)$ and edge set $E(G)$, a vertex labeling $f : V(G)rightarrow mathbb{Z}_2$ induces an edge labeling $ f^{+} : E(G)rightarrow mathbb{Z}_2$ defined by $f^{+}(xy) = f(x) + f(y)$, for each edge $ xyin E(G)$.  For each $i in mathbb{Z}_2$, let $ v_{f}(i)=|{u in V(G) : f(u) = i}|$ and $e_{f^+}(i)=|{xyin E(G) : f^{+}(xy) = i}|$. A vertex labeling $f$ of a graph $G...

متن کامل

Tetravalent one-regular graphs of order 2pq

A graph is one-regular if its automorphism group acts regularly on the set of its arcs. In this article a complete classification of tetravalent one-regular graphs of order twice a product of two primes is given. It follows from this classification that with the exception of four graphs of orders 12 and 30, all such graphs are Cayley graphs on Abelian, dihedral, or generalized dihedral groups.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004